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SECTION 1

INTRODUCT ION

Waves are influenced by the constitutive properties of the material
in which they propagate. The effects of constitutive properties on spherical
wave propagation is of special interest in calculating the effects of under-
ground nuclear explosions. Recent efforts using numerical methods to predict
the effects of the PILEDRIVER event have focussed attention on the role of
mathematicai models of constitutive properties. The purpose of the present
paper is to illustrate how various assumptions about constitutive properties
affect the calculated wave propagation.

In the present analysis, the finite element method is adapted to
spherical geometry. A mathematical model is derived for Cedar City lYonalite
based on laboratory measurements. The model contains a bulk modulus which
depends on the current density, a shear modulus, a yield criterion and a rule
of plastic flow. The Tonalite is considered to be 2i inf!nite medium surround-
ing a cavity which contains a sphere of chemical explcsive. Detonation of the
explosive is represented by applying a pressure to the surface of the cavity
which varies with time in a manner similar to that measured by Physics Inter-
national Company (Reference 1). The peak pressure used in the present calcu-
lations is 31.5 kilobars.

The results of the calculations are presented as stress/time histories
and stress/strain reiations at various ranges and as rates of attenuation of
the peak radial stress. The effects of varying these properties are studied
by comparing stress/time Listories and stress/strain relations at various
ranges and as rates of attenuation of the peak radiai stress The primary
comparisons are made among cases where the radial stress applied to the cavity

surface and hence the impulse is invariarn..
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SECTION 2

FINITE ELEMENT METHOD

The application of the finite element method to problems in
continuum mechanics has been thoroughly discussed by previous writers
(References 2-4). Hence, only a few subjects pertaining specifically to the

present adaptation of the finite element method are discussed below.

The incremental equation of dynamic equilibrium is

[m]{su} + [c]{su} + [K]{6u} = {&P} (1)

in which [m])

Global mass matrix
[c] = Global damping matrix
[K] = Global (tangent) stiffness matrix
{65}, {6&}, {6u} = Increments of acceleration, velocity, and displacement
{6P} = Increment of load

The global stiffness matrix is assembled from element stiffness

matrices [k]. For a typical element (see Figure 2-1)
7 T -1
= | 81Tl [elav(a] (2)
Vol

where [A]-1

A transformation matrix relating the generalized displacements
of the finite element theory to the physical radial displace-

ment
[B] = Strain/displacement transformation matrix

[D] = Matrix of tangent stress/strain moduli relating incremental

stress to incremental strain

PRECEDING PAGE BLANK
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FIGURE 2-1, SPHERICAL ELEMENT DEFINED BY
TH TH.
i" AND ' "' NODAL SURFACES

in the present case

(1 ]
2 2
rj I‘i
(A = —1— (3)
M
2 2
r. r, -r r
J L I | i

where i rJ = Radii of the lth and jth nodal surfaces

[F\].1 expresses the displacement u between the ith and jth nodal
surfaces by the following equation:

v o= <Lr r'2>[Al"{:‘_ ()

J

The displacement function, Equation 2-4, satisfies the elasto-static

solution of a hollow sphere subjected to internal and/or external pressure.
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The strair components associated with this displacement are

€, 1 -2 r-3
u,
€ot = 1 3 U]‘{u1
1 -3 !
€y r
Hence,
1 -2¢"3
(8] = |1 3
1 r.3

Within an eiement, strain varies as l/r3.

R-6813-777

(5a)

(5b,c)

(6)

(7)

The global mass matrix is based on the assumption of lumped mass

at nodal surfaces. Each element contributes half of its mass to jts two

end nodal surfaces as illustrated in Figure 2-2. In the problems to be dis-

cussed here, the global damping matrix is assumed to be zero.

The method by which the displace-
ment increment at t,+ 8t is obtained from
the known solution at t, is based on the
assumption of linear acceleration during the
time step. The method is based on work by
Wilson (Reference 3) and Felippa (Refer-

ence 5). The solution is obtained in two

FIGURE 2-2,

A°A108)

LUMPED MASS

APPROXIMATION
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steps as illustrated in Figure 2-3. In the first step, the solution at

to + 8t/2 is estimated using the known tangent stiffness at to. This is done
by obtaining a temporary solution at to + 6t (1 in the Figure) and then inter-
polating to t,*+ 6t/2 (2 in the Figure). The solution at the end of the first
pass s used to evaluate the stiffness matrix [K] at t + 5tf2. The first
pass solution is then dizcarded. The second pass is performed using [K] at
t, * 5t/2 to obtain a temporary solution at t  + 26t (3 in the Figure). The
final result is obtained by interpolating between t, and L 25t to find the
incremental displacement at t, + 8t (& in the Figure).

28 PASS
FERFORMED US ING
TEMPORARY
SOLUTION =
ul  INSERPOLATION IO PASS

FIGURE 2-3. INTEGRATION TECHNIQUE

15T PRSS FOR PRESENT FINITE ELEMENT METHOD
| USESKATY
“_‘_“ll‘ N ;I’! 1,8 DR

This integration procedure requires the equations of motion to be
solved twice during every time step and therefore appears to be more time-
consuming than necessary. However, the materials of interest exhibit a large
difference in stiffness between loading and unicading, and it was feared that
small numerical errors might lead to large changes in stiffness and to insta-
bility. Hence, the sonservative procedure described above was adopted. The
present calculations show that this procedure is stable. However, some recent
theoretical work at AJA seems to indicate that a one pass method would be
just as effective as the present two pass method. Further work is required

to confirm this.
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SECTION 3

MATHEMATICAL MODEL OF MATERIAL PROPERTIES

The mathematical model which is used in the present work hzs the
following basic features:

Bulk modulus (B) may be a function of the excess compression

y = %‘ = 1, where p = current density and P, = initial
o
density.

Shear modulus (G) may be a function of the current state of

stress. In the present examples it is assumed to be constant.
Yield criterion may be a function of the first stress invariant
(J') and of the second invariant of stress deviator (J3)
(Reference 6).

Work-hardening or strain-hardening rules prescribe how the
yield criterion may vary as a function of plastic work or
plastic strain. In the present examples, hardening is assumed
to be zero and the initial yield criterion is a permanent
property of the material (Reference 6).

Flow rules prescribe how changes in plastic strain are related
to charges in stress when the yield criterion is satisfied.
Two flow rules, the plastic potential (Reference 7) and a vers-

ion of the Prandtl-Reuss rule (Reference 8), are considered.

This mathematical model must be expressed as a matrix of coefficients

|D| relating stress increments :do; to total strain increments :deg .

o] = [o] |éc] ®

The IDI matrix has two purposes in the finite element scheme described above.

One is in formulating the element stiffness matrix lkl, Equation 2. The
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second purpose is in determining the stress increments In the element between
the ith and jth node from the incremental nodal displacements as Indicated

by Equation 9.
-1 dui
{do} = [0] [B] [A] duj (9)

The starting polnt in derlving [D] 1s lHooke's law for smali strains
which relates “he Incremental stress tensor, d“ij' to the ejastic component

of the strain tensor, dei:.

do,. = A deS, &

1] W St 2c(de§J) (10)

where ) = Lame's parameter, B - %-G

If the state of stress does not satisfy the yleld criterion, the elastic
strain increment and the total strain Increment are equal and [D] is based
on Equation 10. However, 1f the yield criterlon is satlsfied, further com-

putations are necessary to obtaln [D].

Defining the elastlc straln Increment as the difference between the
piastic strain increment, de?j, and the total strain increment, deij'

Equation 10 may be rewritten as foilows:

p p
doy | A(dekk dekk) 5 * ZG(deU deij) (11)

The fiow rule Is used to e.press de?j in terms of the yield criterion and

components of the stress or stress deviator tensor

4. = A af (plastlc potential) (12a)
ij Boij
p af
deiJ = A s (present verslon of (12b)
1j Prandtl-Reuss fiow rule)
8
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For the sake of simpiicity in the following derivation, both Equations 12a, b
are expressed as

R-6813-777

= Af,, (13)

In the subsequent applications of the mathematical model it is made clear which

flow rule is being used.

From the assumption of no work or strain hardening, it follows that
there is no change in the yieid function. The mathematical statement of this

assumption is

d(f(oij)) = 0 (14a)
or
af -
3°ij doij = fij doij = 0 (14b)

Substituting Equation (11) into Equation (14b) and making use of Equation (13)
leads to the following equation.

A(dekk = Afkk) Gijfij + ZG(deij = Afij) fij = 0 (15)
The scalar quantity A may be found by rearranging Equation 15.

A(dey ) (Fyg) + 26(de ) (F ) (16)
("
MPd Fp) # zc(fij)(fij)

Making use of Equation (16) in Equation (13) and substituting the result into
Equaticn (11), the stress increment is expressed in terms of the total strain

increment and the total stresses. This is the desired result.

The remaining task is to factor out coefficients in the [D] matrix,
which is given on the following page.
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where

f , ets.
r’

OF + zc;fr)2 (AF + 26F,) OF + 26F )

A+ 2 - Az
\F2 + 26x A\F + 26x

OF + ZGfa)z

A 426 - re———
AFT + 2G6x

Symmetrical
= fr + f0 + f¢
2 2 2
fr + fe + f¢

Derivatives of the yield functicn ¥
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(AF + 26F ) (aF + 26f ) ]

sz + 26x

A -

(AF + cha)(xr + chc)

x‘
AFZ + 2Gx

(rf + chs)2

A+ 26 - -.7_._...._.
AF¢ 4 26x J

(17)

with respect

to stress components {plastic potential flow rule) or

stress deviator components {present version of

Prandti-Reuss flow rule). fr indicates differentiation

with respect to radial stress or stress deviator component,

10
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SECTION &

PROPERTIES OF ROCK USED IN FINITE ELEMENT CALCULATIONS

Speciflic materlal properties were derived from a variety of
laboratory tests on Cedar City Tonaiite and NTS granite. Propertlss of both
rocks are Incorporated intc the model, which is intended to represent a
weathered granite.

BULK MODULUS

The mathematlcal model of bulk modulus is based on hydrostatic
compresslon tests In the range 0-37 kiiobars (Reference 9, 10). Release
adlabat data (Reference 11) were also taken into account when decliding that
hysteresis should be incorporated Into the model. The model, which is
intended for use only when u = %—-- 1 1is positive, is given below.

(o]
Loading (b > u max" the previous maximum p In a partlcular element)
- = i ]
B = B, - (B, - By) exp ("1) (18)

Unloading or reioading (u > "max)

- I .
B = B, + (B, Bu)(uz) (19)
Ymax
Bo *+ (By1e - Bp) ™
and B, = the lesser of (20)

Bult

"
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The empirical coefficients in these equations are as follows:

6 .
Bult = 7.6 x 10 psi ¥ = 0,0275

6 .
Bo = 1.205 x 10" psi u, = 0,05

Bulk moduli for typical cycles of loading and unloading are shown in
Figure 4-1 and the model is compared with oxperimental data i: Figure 4-2.

s, Wrs)

0.01 0.02 0.03 0.04 0.05 0.06 0.07 .08 00 001 0.02 0.03 0.08 005 0.06 007 -':.(LB?-
" oarese B ysen
2. MODEL BULK MODULUS FOR LOADING AND UNLOADING b. MODEL HYDROSTAT FOR LOADING AND UNLOADING

FIGURE 4-1, MODEL BULK MODULI AND HYDROSTAT

3 %
k T 7
1 Hew / /
3 MODELIS/
] .00} - N
.I
a £
0.4 v : 5.0 lﬂ\ / 1
. g DATAN,
» » .}
w
9 =] & IO.NJ s 1
a . a . ﬁ ! i
e 'o " & V/ i I
Tuslte 1Sk o | PRESENT g W 4 ! :
[ ol g ‘;__'“ P MODEL g /{ 5 ———HUGONIOT
S SR @ s ; ——— HYDROSTAT
BT 00 e B % !
& 8 9 - pE— i
5m 9 o REFQ
s REF 1A
, * REF 11
% 0.2 0.4 06 0.8 10 0 I l l
; ) ! . . ! 0 002 004 006 008 0@ 012 0.1
i PRESSURE, Kb u
2. LOW PRESSURE BULK MODULUS COMPARED WITH DATA (REF 100 b. MODEL HUGONIOT AND HYDROSTAT COMPARED WITH DATA

AMI0Y,
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SHEAR MORULUS

The mode! shear modulus is based on the slope of deviatoric scress/
strain curves measured during triaxial compression tests on Cedar Clvy
Tonalite (Reference 10). The data, which are shown in Figure 4-3 seem to
indicate that G decreases with increasing confining pressure. The trend is
too week to Jjustify a model which is more complicated then G = a constant.
However, the G which is chosen

" -y ‘

6 = 0.69 kb ~ 10° psi

gives more weight to the data at the high pressure end of the range of

measurements.

w2 T 1

EACH TYPE OF SYMBOL DENOTES ONE
TRIAXIAL COMPRESS ION TEST (REF 10)

0.2
£ o0

{ - ° . ‘ s 40000
| . ° 0.1 et .o.ol‘_pﬁ }: u Seooe
’ * Yy .~“ ®
! » -1-‘-.7 aumn
: ‘ Passzml MODEL
3
; 0
! 0.2 0.4 0.6 0.8 1.0 1.2 1.4
| PRESSURE, Kb
b
{
{ FIGURE 4-3. SHEAR MODULUS VERSUS PRESSURE
4

IELD CRITERIA

The yleid criterion, which has th: form

is based on several types of experimental data. The yield criterion at low

i pressure is based on static, triaxial compression experiments which were
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conducted on samples whose minimum dimension was 1 to 2 in. Data obtained
from presawn samples of Nevada Test Site granite (Reference 12) and

Cedar City Tonalite (Reference 10) and from intact samples of Westerly
granite (Reference 13) and Cedar City Tonalite (Refarence 10) were considered.
The reason for considering presawn samples, which were sawn through at angles
of 45-60 deg to the direction of major principal stress, |z to try to take
into account. preexisting cracks ir the Physics International specimens and

the faults and joint planes which exist in large rock masses in situ.

The data on which the yield criterion is based are shown In

Figure 44,

3.0
l .
a INTACT WESTERLY GRANITE, REF 13
v INTACT TONALITE, REF 10
2.5[—— w PRESAWN TONALITE, REF 10
© PRESAWN NTS CRANITE, REF 12 v
v
_20 vV,
g = :
g; v
Iy
=~ 15 . a a
&~ X /PRESENT YIELD
v CRITERION
A // 1
1.0 v . v // -448, 050 PS1 <))
viase |, ”’,,a"
Y [ ® s | ]
a —*”""
0.5
A o
—”";"
[ BN ]
O 0 @ » & 50 -0 -0 8% -9
J;, 1000 PS| AJA1049

FIGURE 4-4, TRIAXIAL COMPRESS!ON DATA AND PRESENT YIELD CRITERION
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A fower limit on shear strength in the range of the data Is used
for the yield criterion in the present calculations. The purpose of this is
to use a physically plausibie yield criterion while allowing a maximum amount
of material to undergo ineiastic deformation. The cosfficients defining the
present criterion are as folliows.

@ = -0.157
c, = 1450 psi

This criterion Is assumed to apply in the foliowing range of mean stress.

Iy
-149,350 psl < 3= = p

The criterion impiies that the maximum aliowable daviatoric stress Is zero
when p = §l" 1900 psi. The material has a strength under uniaxial tensiie
stress of 2500 psi, which is too large to be a good respresentation of
weathered granite. A preiiminary study indicated that the attenuation of
peak stress and general shape of the compressive phase of the pulise varied
littie as the details of the tensile properties were varied. Hence, the
present Coulomb yield criterion plus the restriction that the mean tenslie

stress may never exceed 1900 psi were adopted for simplicity.

| The yield criterion which Is assumed to appiy In the region
31-- p < -149,350 psi is the von Mises type

= 76,000 psi

15
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This criterion is based on the hypothesis that the rock has an ultimate shear
strength depending on the strength of minerals withir. grains and is Independ-
ent of friction between grain boundaries. The ldea of using a von Hlses
yleld criterion is further supported by the data In Figure &-2, whica

1 Indicate that the hugoniot is approximately a constant distance equai to

about 90,000 ps! above the hydrostat for u > 0.05. This is conslstent with
a value of c, = 76,000 psi.

The mean stress at which the transition from Couiomb to von Mises
.yiold criterion is made is determined by using the criterlon giving the
minimum allowable \/:J_i

a,J, + ¢
\IJE = min v !

2

One feature of the model which does not agree with the experimental
data is the hugoniot elastlc limit (HEL in Figure 4-2), defined as the stress
level at which a wave propagating in the materiai has more than one character-
istic speed. Although this definition is somewhat inadequate in that it over-

looks diffusion, rate effects and compaction at iow stress ievels, there seems

This has been reported experimentally at about 1 = 0.048 or g, = ~320,000 psi
(Reference 14). In the present model, it occurs at about u = 0.066 and

o, = -435,000 psi. One way to bring thls aspect of the modei into better
agreement with the experimental data Is to increase the shear moduius to
G=1.5x 106 psl. This would also bring the shear moduius into better
agreement with low pressure data, and in calculatlons it wouid indicate more
inelastlc deformatlon on ioading than does the present modei. The overall

effect on the present series of calculations of making such a change would
1 probably be small, however.

16

to be a distinct stress levei in Tonaiite where the wave spred aiters appreciably.
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DENSITY

It is assumed that the initial density of the material
£, " 2.55 gm/cm3 = 0.000238 1t -sec2/in.%. This valus is representative of a

number of samples taken from the Cedar City site.

PREVIOUS WORK

The mathematical model of weathered granite used here is adapted

from previous work reported in Reference 15.

17
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SECTION 5

NUMERICAL RESULTS

Calculations were performed in which the cavity size and pressure/
time history applied to the surface of the cavity are cemparable to those in
physical experiments conducted by Physics international Company, Reference 1.
The finite-element grid used in the present calculations is shown in Figure 5-la.
The pressure/time history for the present calculation, Figure 5-1, is adapted
from a radial-stress/time history which was measured in a spherical wave
experiment on Cedar City Tonalite where the wave was generated by detonating

chemical explosive.

The purpose ¢f using the fine mesh illustrated in Figure 5-1a is to
try to maintain the correct rise time of the wave. The rise time, as indicated
by measurements in the physical experiment which are reliable to the nearest
0.1 x 10-6 sec is about 0.7 x 10.6 sec. As should be expected in a numerical
solution method of the type used here, the rise time increases to 2.0
- 3.0 x 10-6 sec by the time the wave has propagated a distance equal to
5 x o where Mo is the cavity radius. A somewhat greater increase in rise
time is noticed in the physical experiment, which is probably due either to
viscous properties of the material or to dispersion caused by small-scale

inhomogeneities in the rock structure.

The reason for trying to represent the correct rise time is that,
in the vicinity of the cavity, the rise time influences the rate of attenuation
of peak radial stress and particle velocity. This point is discussed in
detail in Appendix A. The rate of attenuation is a parameter of practical
interest and is used in the present analysis as one index of the effect of
changing a particular material property. Hence it is important for the rise
time in the numerical calculations to be a physically meaningful quantity and
for it to be the same from one computation to the next. Hence, a conservative
integration time step 6t = 5 x 10-8 sec and a fine finite-element mesh were

used.
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ELEMENT 1  1.015
CASES 1-5

- m L J . A A IR s
0.0 005 010 015 02 03 0% 0% 0&
o TIME, 107 skc st
to A 0BMN e 00— il
' ELEMENT 1 - 1,015
a. - FINITE ELEMENT MESH S {ZE CASES 6,7
00.0
-100.0
2
Q- -200.0
7

.10 015 02 02 0% 0% 04
Time, 1074 sec S

b. PRESSURE/TIME HISTORY AT CAVITY WALL

FIGURE 5-1. MESH SIZE AND LOADING USED IN PRESENT CALCULATIONS
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The main results of the present study were obtained from a series of
seven czlculations which are described in the following table.

Case

STRESS/TIME HISTORIES

Descrlgtlon

Linear elastic (no yield condition imposed);
B = Bo = 1,2 x IO6 psi; G+ 1 x Io6 psi

Variabie modulus (no yield condition imposed):
B defined by Equations 18-20; G = | x IO6 psi

Variable modulus as in Case 2 with von Mises .
yield criterion (a = 0, ¢ = 76125 psi)

Variable modulus as in Case 2 with Coulomb
yield criterion (a = ~0.167, ¢ = 1450 psi) at
p > =14.5 kb and von Mises criterion (a = 0,
c = 76125 psi) at p < -14.5 kb. Plastic
Potential flow rule is used.

Same as Case b, except that Prandtl-Reuss

flow rule is used.

Same as Case 4, except that impulse is increased

by a factor of 2.

Same as Case 2, except that impulse is increased

by a factor of 2.

The radial and circumferential-stress/time histories at various ranges

from the cavity wall are shown for each case in Figures 5-2 to 5-5, Compressive

stresses are defined to be negative. The time duration of each calculation is

35 x 10-6sec, which allows a fairly complete picture of the stress pulse in the

range r/r° = 1-4,
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HOOP TENSILE STRESS

The hoop stresses (ae, o’) are tensile or compressive according to
the sense of the elastic component of hoop strain. In spherical waves, the
hoop strains (se, e,) tend to become tensile due to outward radial disp'acement
(u) according to the following equation

€ =

0 e¢ = u/r

Since in the present calculations the rise time of radial stress and particle
velocity is very short, u=0 at the time of peak .. The state of strain
at this time is approximately uaiaxiai compression in the r-direction, and
hence compressive o, gy are induced by Poisson's ratio effects just as they
are in piane wave propagation. This behavior is governed by the materlal
propertics and wave shape used in the present calculations. The hoop stress
wouid be initiaily tensiie if Poisson's ratic were assumed to be zero, and the
ampiitude and duration of the compressive hoop stress would be reduced if the

rise time were lengthened.

Following an initial compressive phase, Tgs o¢ become tensile in

the iinear elastic and variable modulus cases (Cases 1 and 2). In Case 3,

Tgs Ty at r/ro = 1,015 are infiuenced by the development of plastic deforma-
tion, during which the effective Poisson's ratio is 0.5. The component of hocp
strain due to Poisson's ratio effects is thus larger than in Cases 1 and 2, and
outward displacement must be correspondingly iarger before oo o¢ can become
tensiie. This accounts for the occurrance of tensiie stresses at about t =

22 x 10-6 sec in Case 3. At ranges greater than about r/r° = 1.75, the yield
criterion is no longer satisfied in Case 3 and Oy % become similar to those

in Cases 1 and 2.

In Case 4, tensiie stresses do not occur anywhere within the range
considered. Part of the reason for this behavior is the Couiomb yield condi-
ticn which allows plastic deformations to occur at relatively low stress leveis
and targe ranges. Aiso, dilatency or piastic volume increase takes place during
unioading. In the range of this probiem, outward displacement is not iarge

enough to absorb ali this dilatency, and so hoop compressive stresses are induced.
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This effect of dilatency is further iflustrated in Case 5, where
the Coulomb yield criterion is used but plastic dilatency is not allowed.
The low yield criterion suppresses tensile stresses at r/r° = 1,015, but

at greater ranges, tensiie stresses develop for the same reason as in Cases 1-3.

orloe TRAJECTORIES

Plots of O, VS dg, O, further {ilustrate the infiuence of the
yield criterion on the wave shape. Figures 5-6 to 5-8 show °r/°e’°¢
trajectories at r/r° = 1.015, 2.00 and 3.00. Superposed on each figure are
yleld criteria used in Case 3 (von Mises) and Cases 4, 5 (von Kises at
p < 14.5kb; Coulomb elsewhere). In Cases 1 and 2, the stress path is unre-
strained by a yieid criterion. The ratio of °r/°e is greater in Case 1 than
in Case 2 because Poisson's ratio in Case 1 is smaller. In Case 2, Poisson's
ratio tends toward 9.45 as the bulk modulus B tends toward its maximum value of
7.6 x lospsi. This causes the material in Case 2 to appear more fluid-iike
than in Case 1. Hence tiie stress state in Case 2 lies nearer the hydrostat.

Rt CASE SymeoL |
.,”’7 preasloio ]
4
-500 A
-850
'“F
7 -mo—t
3 Y,
x 50
-] ¥
.ml-—-- b . _.|
-150 :
¢ /4N
-50
o |

-50 -100 -150 -200 -250 -300 -%0 -400
o, 1000 PSI
6 AJAI0AS

FIGURE 5-6., STRESS TRAJECTORIES AT
r/r° = 1.015
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!1 The trend which is exhibited in Case 2 alto appears in Cases 3, &,

3

and 5. For example, at r/ro = 2, the peak stress in all cases lies inside .
the yleld surface. Frequently, at greater ranges only the peak or only the

toe of the stress wave lies on the sleld surface. A major featuie of the
present calculations is the absence of sustained plastic deformation on loading.

In contrast, unloading is frequently accompanied by significant
plastic deformation. The outward displacement which accompanies any compression

wave caused o, to unload more rapidly than .. The result is that the

)
stress point in °r’°e plane tends away from the hydrostat on the o, side
untll 1t encounters the yield surface. During subsequent plastic unloading,

o, remalns the major principal stress. This behavior is distinctly different

from the one-dimensional strain case, In which the major principal stress
during plastic unloading is at some stages perpendicular to the direction of
wav. prepagation.

DILATENCY AND 1/y

Plastic deformation in Case & is associated with dilatency, or plastic
volumetric expansion. By far the largest amount of plastic deformation, and
hence dilatency, takes place during unloading. This is illustrated in Fig- 2
ures 5-9 and 5-10 where the P/u curves for Case h are compared with those In
Case 2 at r/ro = 2 and 3. Dilatency causes the unloading P/u curve to lie above
the loading curve. Thus, during most of the unloading phase, the bulk modulus
1 is less than either the loading or the unloading bulk moduli in the absence of
! plasticity. This behavior, in conjunction with inelastic deformation in shear,

reduces the speed of the unloading wave and therefore contributes to a slower
rate of attenuation of the peak o for Case 4 than for other inelastic cases.

Although the unloading P/y curve is above the loading curve, there
is net energy dissipation in the material. This is demonstrated in Figures 5-9
: and 5-10, where the areas under the shear stress/strain curves at r/ro = 2
and 3, representing absorption of inelastic energy, are greater than the areas
between the loading and unloading P/u curves.
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FIGURE 5-10. ENERGY DISSIPATION AT r/r_= 3
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GROWTH OF CAVITY

The amount of cavity expansion is a reflection of the material
properties and the amount of energy originally available to propagate the
wave., The displacement of the cavity surface in Cases 1-5 is shown as a
function of time in Figure 511, Plastic deformation in Cases 3-5 is appar-
ently responsible for the large expansion. One reason that the expansion
in Case 3 is less than in Cases 4 and 5 is that the yield criterion in Case 3
permits hoop stresses to tend toward tension whereas the criteria in Cases 4
and 5 maintain compressive hoop stress at the cavity wall. The second reason
is that mcre yielding occurs in Cases 4 and § because the yield criteria are

satisfied at a 'ower stress level,

e e

TiNE, 10 sec anazsy

FIGURE 5-11. DISPLACEMENT OF CAVITY WALL
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ATTENUAT ION RATES

The rate at which peak radial stress attenuates with range is a
common index of the materizi: properties and wave behavior., The stress at
the front of a spherically-diverging step wave propagating in an elastic
material attenuates at a rate proportional to el (Reference 16). Inelas-
ticity may accelerate attenuatlon by gllowing unloading signals to overtake
the front and by absorbing energy of the wave.

The interpretation of attenuation rates in the present work is
complicated since each case has a different amount of energy initially

available to propagate the wave. This happens because a common pressure/time

history acts through different displacements of the cavity wall. The amount

of energy initially available to the wave in each case is shown in Table 5-1,

TABLE 5-1. ENERGY AVAILABLE TO
PROPAGATE WAVE

Case U/U°

1
1.03
1.52
2.61
2.69
8.95
L.25

NS T B W -

U° = 0.127 x 106 in.-1b

The attenuation rates of peak radial stress in Cases 1-5 are shown
in Figure 5-12, Comparison between Cases 1 and 2 indicates that adding
volumetric hysteresis strongly increases the Attenuation rate. This is
because volumetric hysteresis absorbs some of the energy of the wave and
because the unloading signals travei faster than the loading signals, over-

taking the peak and degrading it. Interpretation of Case 4 is complicated
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because there is considerably more energy initially availatie to propagate
the wave than in Cases 1 and 2, but the material of Case & is zlso much more
dissipative. The slow attenuation rate of the peak in Case ! appears not

to be due to the extra energy in the wave, which is primarily associated with
the portion of the wave behind the peak, but instead to the reduction in

the speed of unloading signals caused by dilatency. This is due to reduction
in the effective bulk modulus caused by dilatency as illustrated in Fig-

ures 5-9a and 5-10a.

nl.,._ 3 - R, - - +—
05—+ —{ -

04—\ |-

03— ———

\USEI

__JCASE4

Urfﬂo
il

[

s
=t

L]

T
|
-8

0.03 i \
CASE 2
0.02 ~——t- -
ﬂ.llll 2 3 4 5 6 186910
rh AJAION)

FIGURE 5-12. EFFECT OF MATERIAL PROPERTIES AND
IMPULSE ON ATTENUATION RATE
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Further support for the hypothesis that the speed of unloading waves
dominates attenuation rates comes from comparing the attenuation rates in
Cases 2, 3, and § with that in Case 4. This represents a correlation between
unloading wave speeds and attenuation rates. There is no such simpie cor-
relation between amount of energy initially in the wave and attenuation rate,

as comparison among Cases 2, 4, and 5 shecws.

The most dramatic illustration of the effect of volumetric properties
on attenuation rate is given by Case 4, which differs from Case 5 only in
having plastic dilatation. At r/ro = &, o in Case & is twice as great as
that in Case 5.

EFFECT OF PULSE SHAPE ON WAVE PROPERTIES

To test the hypothesis that the rates of attenuation depend heaviiy
on the unloading waves catching up with the peak and to widen the scope of the
study in general, two caiculations were performed using input puises of longer

duration. The input pulse used in Cases 6 and 7 is iiiustrated in Figure 5-1b,
The peak stress on the cavity wali is the same as in Cases 1 through 5, but the

peak has a duration of 7 x 106 sec. The shape of the unioading pulse is similar
to Cases 1 through 5, and the impulse is about two times greater. The material

properties assumed in Case 6 are the same as those in Case & whiie those in
Case 7 are the same as those in Case 2,

The stress/time histories in Figure 5-5 and the rate of attenu-
ation plot, Figure 5-13, confirm that lengthening the duration of the peak
delays degradation of the pulse. Interpretation of Case 7 is difficult because
the peak is associated with a very sharp rise and decay, which is the ieast
favorable wave chape for the present method of caicuiation. Comparison of
Case 2 with Case 7 suggests that the unioading wave catches up with the peak at
about r/ro = 3-4 in Case 7 and r/ro = 1-2 in Case 2. This is confirmed
by ccnsidering the instant in time at which the unioading wave catches up with

the front of the ioading wave. The maximum speed of unloading waves is

# 1,94 x 105 in./sec
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SECTION 6

IMPLICATIONS FOR MATERIAL PROPERTY TESTING

A mathematical model transforms experimental data from the states of
stress under which the data wers measured to states which occur in calculations.
Since these states may differ widely, great reliance must be placad on the
mathematicai model to do the transformation correctly. Much of the doubt as
to the physicai meaning of calculations is due to uncertainty about the ability
of current models to do this.

The risk invoived in using a mathematical model in the present cal-
culations could be lessened by basing the form of the model and the specific
material property coefficients on laboratory experiments in which the states
of stress are close to those encountered in the calculation. One use of the
present calculations is to guide the planning of laboratory experiments on -
plane or cylindrical samples which support spherical wave field tests. The

present calculations indicate the following two important areas of concentration.

a. P/u relation for hydrostatic loading and unloading to indicate

how the amount of hysteresis varies with ¥ max’

b. Stress/strain relations for loading programs in which the yieid
criterion and inelastic deformation investigated on unloading,

See Figure 6-1.

FIGURE 6-1. PROPOSED LOAD!NG
PROGRAMS FOR INVESTIiGATING
YIELD CRiTERIA AND INELASTIC
DEFORMATION ON UNLOADING

% " %
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The purpose of investigating the P/u relation under hydrostatic

loading is to establish the amount of hysteresis in the absence of dilatancy, 3
which is kncwn to develop near the maximum deviatoric stress. Having established

this, the amourt of dilatancy which occurs during inelastic deformation on

unloading may be investigated. The results will shed light on which of the

two flow rules investigated in the present study is the more appropriate, and

whether the yield criterion is the same on unloading as on loading.

These suggestions are intended to improve the effectiveness of the

type of mathematical model used in the present calculation. It is possible

that such experiments would expose the present model as being inadequate or
misleading for application to spherical wave situation. In this event, it
would become necessary to investigate new types of models.
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SECTION 7

CONCLUSIONS

The features of the present mathematical model which most strongly

affect the results are

a. The amount of permanent volumetric compaction during hydrostatic

loading and unloading,

b. The amount of dilatancy azcompanying inelastic deformation,

¢c. The yield criterion during unloading.

i Laboratory testing should be concentrated in these areas to support the

development of a model for use in spherical wave calculation.
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APPENDIX

An investigation was made of the effect of rise time on the pulse
shape and attenuation rate of spherically diverging waves. The purpose of
the study was to determine whether the rise time of the prescribed stress or
veiocity boundary condition significantiy affects the calculated stress pulse
at ranges between 1 and 5 times the cavity radius. For the rise times and
material properties of interest to the present finite element calculations,
the study indicates that the true rise time shouid be represented as accurately
as possible. The initiai rise time of about 0.67 x 10’6 sec, which was
measured in the Physics Internationai Company experiments, was chosen as
being representative of shock waves generated by detonating chemicai explosive.
The finite element mesh size and integration time step were seiected so as

to represent this initiai rise time as accurately as possible.

In the first part of the study, use was made of Jeffreys' soiution
{Reference i7) for a step pressure puise on the wail of a cavity whose radius

is o The particie veiocity at a range r is given by the following
expression:

- .é. :9.&’;2[,-0,/2— = /z—(r -:29-) siny/2 8 + 2r cos‘/-Z_B] exp(-g) (A-1)
Gr

where u = Radial particle veiocity
r = Cavity radius
r = Range
o = Appiied radiai siress on the cavity wali
c_ = Diiitational wave speed

G = Shear modulus
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The solution applies subject to the restriction that

ct-{r-r)
g - 2 >~ > 0
r
o

Although this solution applies to the case of a step load in a
cavity, it can be used to obtain an estimate of the solution for a ramp load
by summing up the effects of many small step loads, as illustrated in
Figure A-i. Several cases were studied using Jeffreys' solution. One of
these was compared with the corresponding finite element soiution.

Case Solution Method B

Al Jeffreys 0.

A2 Jeffreys Adapted 0.0055 sec
A3 Finite Eliement 0.0055 sec

a. STEP LOAD 0
5. APPROXIMATION TO RAW LOAD
AJA1057

FIGURE A-1. INPUT FOR JEFFREYS' SOLUTION
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The following geometrical, material, and loadirg pammeters are common to all

three cases.

1.465 x 10° In./sec

2.013 x 10° psi

(3]
[ ]

(1]
[ ]

100 in.

-
L]

Q
[ ]

0.04775 psi

The velocity time history for each case is obtained at r/ro = 2,44, The
results which are plotted in Figure A-2 are typical of the dramatic effect
of rise time on the peak particle velocity and pulse shape.

------ FINITE ELEMENT l"ﬂ.m SEC
— — JEFFREYS' SOLUTION l. = 0.0055 SEC
— JKFFREYS' SOLUTION l"O.

\\' P
N

/

a

N

[

VELOCITY, 10 IN. ISEC

s

o 3 4 5 6 1 8 9 10
TIME, MSEC T

FIGURE A-2, VELOCITY/TIME HISTORY AT
r/ro = 2,44
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A second study was initiated to study the effect of rise time on
the shape and attenuation rate of a wave having the same initiai shape as .
the one used in the present finite element calculations. This shape is
represented in the anaiysis by a linear rise to a peak pressure foilowed
by an exponential decay. Figure A-3 illustrates the shape of the input
pulse and the geometrical coordinates of the analysis.

2. SPHERICAL CAVITY INELASTIC MEDIUM ‘,‘

mmoo
1 EQUATION A-12
Lﬂ;" o o |
b. PRESSURE/TIME HISTORY ON INTERIOR OF CAVITY AJALOSS

FIGURE A-3. COORDINATES AND PRESSURE/TIME
HISTORY FOR RAMP LOAD WITH
EXPONENTIAL DECAY

LAY A Frea St

£ oo
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Consider the configuration shown in Figure A-3. A spherical cavity
of radius P in an infinite body initially at rest is subjected to an
internal pressure p(t) at the boundary r = ro- Under the assumed condition
of spherical symmetry and infinitesimal displacements, the response at a
point P at an arbitrary position (r, 8, ¥) is to be determined. Due to
spherical symmetry, the components of displacement in the 8 and ¢ direc-
tions, v and w, respectively, vanish. The rencining response parameters
are functions of r and t only. Since only infinitesimal displacements
are considered, no distinction need be made between deformed and undeformed

positions.

The only nontrivial equation of motion is that in the radial
direction (for a general theory of elastic wave propagation; see Kolsky,
Reference 18) and when expressed in terms of the dilatational displacement
potential function ¢ it becomes simply the one-dimensional spherical wave

equation
2 1 2
vzw z 2—‘2”-4- 2% . —2-3 (A-2)
art 7O ¢’ at

r < r<w
where ¢ = y(r,t) °
D<t<ow

and cp = (A + 2u)/p is the dilatational wave speed and A, u are the

Lamé constants. The dilatation potential ¢ . is related to the radial displace-

ment u by

u = == (A-3)

W7
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The radial stress o, and tangential stresses o

r o’ %y
Ju u 32‘1’ 2) 3y
l ———— — = —  p—
op = 0+ 2u) ar T2y (+ 2u) 3r2 * e

2
- - u du _ 200+ u) 3y 3y
9 o, 2(r + u) =5 = . 3'+kar2

All shear stresses are zero as a result of symmetry.

At the boundary r = fo?

6, = -P(t)

or

2
(x+2u)a—-'2£+ -2%%"@ = -P(t)

or
r=r
o

o, are obtained from

(A-4)

(A-5)

and with r >, y is taken to be zero since the medium far enough away from

the cavity is undisturbed for finite times.

The Laplace transform »f y(r,t) is denoted by

p(r,p) = fwe-ptw(r.t)dt
0

Applying this operation to the differential equation (A-2) provides

2- =
dvyv  2dy 27 _
7t Tar - Kgv 0
dr
48

(a-6)
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where kp - p/cp. The solution to Equation A-6 Is, accordingly,

= k
Hrp) = ALY, 300

where A(p), B{p) are arbitrary functions of p. The boundary condition at
r + « suggests taking B(p) = 0 so that

-k r
p(r,p) = A—'(,Bl-e P (A-7)

Application of the Laplace transform to Equation A-5 ylelds
da%y . 2 dp =
(» + 2u) d—%-&- Ta-t' = -P(p) (A-8)
r

where ;’(p) is the Laplace transform of P(t). Equations A-7 and A-8 together
determine the arbitrary function A{p) and It Is found that

r_o ;(p)e'p(r - ro)/cp

pr p+p)lp+0p,) (A-9)

i’(rsp) = =

where p, = 2a(1 + iB)
P, = 2a(1 - i)
2
a = cs/rocp
2
B = V(cp/cs) -1

and ¢, = \/;/T is the shear wave speed. A formal solution to the problem

is therefore given by the Inverse Laplace transform of Equation A-9:

. PR -(r=-r)/c ]
l'o P_(p)e [t (o) P -
y(r,t) = BHlor o+ pl)(p ™ pz) dp (A-10)
c

h9
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where C( denotes a sulftable contour
can also be written as

R-6813-777

in the complex p-plane. Equation A-9

- o P
A T A [P

-plr - r)/
! ]epr "o’ p (A-11)

"p] P+p2

which is a more convenient form for the Inversion process.

Consider the exponential pulse given by

9% Ato

1-¢t/t. N

g 0
- : ae
ns

. =t [H(t) - H(t - Ato)]

(A-12)

-bn(t - Ato)/to

[H(t - At ) - H(t - to)]

where H(t) 1Is the Heaviside step function

H(t) = {

0 ift<O0

ift>0

and N Is any integer. The pressure pulse given Ly Equation A-12 is called

an N-term exponential pressure pulse.

form of Equation A-12 is

It can be shown that the Laplace trans-

Pp) . _1_ [1_+ 1 ]e-AtOP
a 2 P 2
o Atop Atop

1 -Atop

N
+ a -
§ n [p * bnh:o (1 - A)to(p + bﬂ/to)2

1 :E;
+ a
- A to £

b (1 - A)
e " “toP
. .;__..____2. e (A-'|3)
p+b/t)

50
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Svbstituting Equation A-13 into Equation A-11 and carrying out the inversion

operation leads finally to

ac [ Pyt P, (r - Ato)
vir,t) = 3 2. l { e +p,T - I]H(t) - [e

Bp 2 1

agpr m Atopl L J

] -p,(r - At )
pI(T-AtO)-IH(t-At°)§+%{e 1 o=

+

N a =b (v - At )/t ~p,{t = At )
: N a [ P, (v - Ato)
S e s s
1= M, n; (py = b /t)
-b_(t - At )/t -b_(v - At )/t
+ (pl - bn/to)(t - Ato) e " O 0. " g ° O]H('r - Ato)
e (c - t)
) a G b (r - t )/t
et ne z[elT °+(p,-bn/t)(1-t)ent o'’ "o
(py - bn/to) ’ £ =
b (t -t )/t
T o O:IH(T - to)} (A-14)

where 1t = 1 - (r - ro)/cp

2a(1 + iB)

he
—
]

2
a = cs/rmcp

g = \/(cp/cs)2 -1

and Im denotes the imaginary part of a complex function.
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Expressions vor u, s and o_ can be obtained from Equations A-3,

A-b, and A-14. The radial velocity u ?s obtalned by differentiating u -
with respect to time (the lengthy algebra involved will not be reproduced

here). Note that the radia! displacement u has terms of the form (r /r)

and (r /r)z, whlle the radial velocity u, the radial stress o " and the

tangentlal stress o, have In addition terms of the form (r /r)3 The

)
response has the general character of a highly damped oscnllatory motion

about the static value. The damping time constant T is given by

1
-.TS ZaB

c/r
S/O
where « o A
c/c
p S

B = \/(cp/cs)2 -1 '

Hence, T 1Is of the order of the half transit time t, = a/cs, i.e., the time
for a shear disturbance to travel a distance equal to the radius of the cavity.
Near tho wave front, the stresses decay like (rolr) with increasing radial
distances. Behind the front, the decay rate is somewhat higher depending on
the value of the time after wave front arrival, 1, compared to T. The limit,
of course, is (rolr)3 for the static case. Therefore, the peak response
depends not only on the peak input (as in all linear systems) but also on how
soon the peak is attained. |In other words, if the Input pulse reaches its
peak in a time smaller than the characteristic damping time T, the response
peaks are expected to scale according to (r/r;)-1. If the input peak is

not reached until after several multiples of T, however, the response peaks

are expected to scale according to (r/ro)-3. This observation is verified

by the results obtalned for the specific exampies considered below.

]
I Numerical results are obtained for the exponential Input pulses

defined by the fnilowina parameters.

S N —
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1 a, = 0.65
| a, = 0.35
i bI = 10
13 b, = 0.1
i Py = -475,000 psi
w t = L0 x 10.6 sec
. o
|
!
l E t = At
4 g : Case p o
- B1 0.
J B2 0.6667 x 107 sec
:: l r3 2.0 x 10-6 sec
B4 5.0 x 10-6 sec
]
é These parameters describe pressure time histories on the surface of the cavity
which cover the range observed in the present finite eiement caicuiations.
Aithongh the input puise in ali the finite element calcuiations has an initiai
. rise time of 0.6667 x 10-6 sec (Case B2), the rise time lengthens to
6 6

2.0 x 10 ° to 3.0 x 10

numerical distortion of the puise which evidentiy cannot be entirely elimi-

at r/r° = L to 5. This iengthening is due to

nated in spite of using smali mesh size and integration time step. Thus,
Cases B° through B4 bound the possibie effects on puise shape and zttenuation
rate which can be attributed to rise time in the present eiastic finite

element caiculations.

The medium surrounding the cavity has the same properties as the

medium in Case 1 of the finite eiement caiculations. These are

B = B° = 1,205 x 106 psi

G = 1.000 x 106 psi

p = 0.,000238 lb-secz/in.h
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The p- and s-wave speeds in the material are

cp = 8590 ft/sec

c, = 5400 ft/<ec

The cavity is assumed to have an initial radius r, e 1 in,

The responses in the four cases are shown at r/ro =1, 2,3, and &4
in Figures A-4 and A-5. The computer program which was used to caiculate the
fesponse automatically defines the arrival time at each station to be zero.
Hence, the response at al! four ranges of a given case appear to start at

zero, whereas in a physical problem each would have different times of arrival.

Except in Case Bl, when the portion of the or/t history prior to
the peak is slightly nonlinear, there is no noticeabie distortion of the puise
due to the various rise time studied. The rates of attenuation, which are
shown in Figure A-6. differ appreciably due to the different rise times. For
example, at r/ro = 4, °r/°o in Case Bl is 1.45 times that in Case B4. This
effect is considered to be too big to be ignored, and hence, care was used

in representing rise times in the finlte element calculations.

An estimate cf the numerical error present in the finite eiement
calculations is indicated by comparing the attenuation rate found in Case 1

with the rates of attenuation found in the ciosed form solutions.

The formal integral soiution is obtained for spherical waves'propagating
from a spherical cavity subjected to a pressure pulse with finite rise time
and exponential decay. The rate of attenuation of the peak stress when it
propagates into the medium depends on the magnitude of the rise time relative
to the transit tine ro/cs. where o is the radius of the cavity and ¢
is the shear wave speed. Fcr zero rise time, the attenuation rate is propor-
tionai tc r-j, whereas for rise times much greater than ro/cs the attenuation

-3

rate ic proportional to r .

54
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FIGURE A-6. EFFECT OF RISE TIME ON ATTENUATION RATE
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